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Abstract
We investigate theoretically and experimentally how the hydrodynamically
correlated lateral motion of particles in a suspension confined between two
surfaces is affected by the suspension concentration. Despite the long range
of the correlations (decaying as 1/r2 with the inter-particle distance r ), the
concentration effect is present only at short inter-particle distances for which
the static pair correlation is nonuniform. This is in sharp contrast with the
effect of hydrodynamic screening in unconfined suspensions, where increasing
the concentration changes the prefactor of the large-distance correlation.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The Brownian motion of colloid particles and macromolecules is correlated through
hydrodynamic interactions, i.e., flows that the motion induces in the host liquid [1, 2]. In
an unconfined suspension [3] these correlations decay with inter-particle distance r as 1/r .
They are positive, i.e., particles drag one another in the same direction. The long range
of the interaction leads to strong many-body effects, manifest in an appreciable dependence
of transport coefficients on concentration. A concentration effect of particular interest is
hydrodynamic screening [2], which sets in over distances much larger than the inter-particle
distance and renormalizes the prefactor of the ∼1/r pair interaction.

Colloids may sometimes be spatially confined by rigid boundaries, as in porous media,
biological constrictions, or microfluidic devices. Attention has been turned recently toward
the dynamics of such confined suspensions [4–12] due to the emergence of microfluidic
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Figure 1. (A) Optical microscope image of the experimental Q2D suspension at area fraction
φ = 0.338. (B) Schematic view of the system and its parameters.

applications and the development of new visualization and manipulation techniques (digital
video microscopy [13] and optical tweezers [14]), allowing the study of dynamics at the
single- and few-particle level. The dynamics of confined suspensions have also been studied
by computer simulations [15–17] and there has been renewed interest in related hydrodynamic
problems [18, 19].

We have recently demonstrated the dramatic effect that confinement between two flat
surfaces has on the hydrodynamic pair interaction at large inter-particle distances [10, 11]. Such
a quasi-two-dimensional (Q2D) suspension is portrayed in figure 1. Despite the confinement,
the hydrodynamic interaction is still long-range, decaying as 1/r2 rather than 1/r . There
is ‘anti-drag’ in the transverse direction, i.e., the correlation between two particles moving
perpendicular to their connecting line is negative. Arguably the most striking finding, however,
is that the concentration of the suspension has no effect on the large-distance correlation, i.e.,
there is no hydrodynamic screening. These three properties are in stark contrast with their
unconfined counterparts mentioned above.

In the current paper we review these results and then extend the analysis to shorter
inter-particle distances where the static pair correlation of the suspension plays a crucial
role. Throughout the paper we present the theoretical analysis along with the corresponding
experimental results. Section 2 introduces the model system and the corresponding
terminology, and section 3 describes the experimental setup and methods. In section 4 we
briefly discuss the dynamics of a single particle and in section 5 address the hydrodynamic
interaction between two isolated particles. Section 6, which constitutes the main part of the
current work, deals with the three-body correction to the pair interaction at finite concentration.
Finally, in section 7 we conclude and discuss the results.

2. Model system

The geometry considered in this work is depicted in figure 1(B). Identical, spherical particles
of radius a are suspended in a liquid of viscosity η and temperature T , confined in a slab
of width w between two planar solid surfaces. The x̂ and ŷ axes are taken parallel, and the
ẑ axis perpendicular, to the surfaces, where z = 0 is the mid-plane. The particles behave
as hard spheres with no additional equilibrium interaction. For simplicity we consider cases
where particle motion is restricted to two dimensions, i.e., to a monolayer lying at the mid-
plane. We use the notation r(ρ, z) for three-dimensional position vectors, where ρ(x, y) is a
two-dimensional position vector in the monolayer. The area fraction occupied by particles is
denoted by φ. The Reynolds number is very low, and the hydrodynamics, therefore, are well
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described by viscous Stokes flows [3]. The confining boundaries are impermeable and rigid,
imposing no-slip boundary conditions on the flow.

We characterize the dynamic pair correlation between two particles by the coupling
mobilities Bc

L,T(ρ) as functions of the inter-particle distance ρ. These are the off-diagonal terms
in the mobility tensor of a particle pair, i.e., the proportionality coefficients relating the force
acting on one particle with the change in velocity of the other. The two independent coefficients,
Bc

L and Bc
T, correspond, respectively, to the coupling along and transverse to the line connecting

the pair. The dynamic correlation between two Brownian particles is similarly characterized
by two coupling diffusion coefficients, Dc

L,T(ρ), which, due to the Einstein relation, are simply
related to the coupling mobility coefficients via the thermal energy, Dc

L,T(ρ) = kBT Bc
L,T(ρ).

(In [10] four coefficients were considered, D±
L,T, whose relation with the ones considered here

is Dc
L,T = (D+

L,T − D−
L,T)/2.)

3. Experimental setup

The experimental system consists of an aqueous suspension of monodisperse silica spheres
(diameter 2a = 1.58 ± 0.04 µm, density 2.2 g cm−3, Duke Scientific), undergoing Brownian
motion while being tightly confined between two parallel glass plates in a sealed thin cell
(figure 1). The inter-plate separation is w = 1.76 ± 0.05 µm, i.e., slightly larger than the
sphere diameter, 2a/w � 0.90. Digital video microscopy and subsequent data analysis are
used to locate the centres of the spheres in the field of view and then extract time-dependent
two-dimensional trajectories. Details of the setup and measurement methods can be found
elsewhere [20]. Measurements were made at four values of area fraction, φ = 0.254, 0.338,
0.547, 0.619 ± 0.001. (Larger area fractions could not be checked because the suspension
began to crystallize [21].) From equilibrium studies of this system [21] we infer that, for the
purpose of this study, the particles can be regarded as hard spheres.

The coupling diffusion coefficients as functions of the inter-particle distance are directly
measured from the tracked trajectories as

Dc
L(ρ) = 〈x1(t)x2(t)〉ρ/(2t), Dc

T(ρ) = 〈y1(t)y2(t)〉ρ/(2t), (1)

where xi(t) and yi(t) are the displacements of particle i of the pair during a time interval t
along and transverse to their connecting line, respectively. The average 〈〉ρ is taken over all
pairs whose mutual distance falls in a narrow range (±0.09 µm) around ρ.

4. Single particle

Consider a single particle whose centre, lying on the mid-plane between the two confining
surfaces, is defined as the origin. A force f1 is applied to the particle in the i direction parallel
to the surfaces (i = x, y). As a result, the particle moves with velocity

u1i = Bs f1i = B0[(a/w)�s(a/w)] f1i , (2)

where Bs is the self-mobility of the particle in the given geometry and B0 = (6πηa)−1 is its
self-mobility in an unconfined liquid. Alternatively, we may consider a free Brownian particle.
Its mean-square displacement during a time interval t will be

〈ρ2(t)〉 = 4D0[(a/w)�s(a/w)]t, (3)

where D0 = kBT B0. The dimensionless factor (a/w)�s(a/w), representing the effect of
confinement, becomes unity in the limit a/w � 1. Approximate expressions for this factor
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for larger values of the confinement ratio a/w were the subject of many previous works (see [3]
and references therein), and their validity has been confirmed in recent experiments [6–8].

The particle motion makes the surrounding liquid flow. At distances much larger than w

the flow velocity is given by [10, 11, 18]

vi (r) = (a/w)B0�i j(r) f1 j

�i j(ρ, z) = −λ0
w2

ρ2

(
δi j − 2ρiρ j

ρ2

)
H (z/w),

(4)

where i, j = x, y, the vertical component vz is exponentially small in ρ/w, and λ0 is a
dimensionless prefactor of order 1 dependent only on the confinement ratio a/w. The flow
field (4) can be viewed as produced by an effective two-dimensional mass dipole (source
doublet), located at the particle centre and oriented in the j direction [18, 22, 10, 11].
The flow has a perpendicular profile H (z/w) which vanishes on the two confining surfaces,
H (−1/2) = H (1/2) = 0, and is normalized to 1 at the mid-plane, H (0) = 1.

As argued in [10, 11], the far flow has the dipolar shape (4) regardless of particle size.
Changing the confinement ratio a/w merely modifies the effective mass-dipole strength, i.e.,
the prefactor λ0(a/w). In the limit a/w → 0 one finds λ0 = 9/16 [18]. As will be shown
below, we find for a/w � 0.45 that λ0 � 0.49. Since the maximum possible confinement
ratio is a/w = 1/2, it is inferred that the function λ0(a/w) actually changes very little with
a/w. This weak dependence on the confinement ratio can be understood in terms of mutual
compensation of two opposing effects: when a/w is larger, on the one hand, the particle
displaces a larger liquid volume as it moves, yet, on the other hand, its self-mobility decreases
(i.e., (a/w)�s(a/w) gets smaller).

5. Pair interaction

Let us introduce a second particle whose centre lies at r = (ρ, 0). The particle is torque free.
It is also force free in the xy plane. Being confined to the mid-plane, it evidently cannot be
assumed force free in the z direction. However, the flow (4) does not exert any force in that
direction on a mid-plane-placed particle. Hence, as long as we restrict the discussion to such
flows, the particle can be regarded as force free. It is thus entrained by the flow with velocity [3]

u2i = 1

4πa2

∫
A

dr′′ vi (r′′) =
(

1 − 4a2

3w2

)
vi (ρ, 0), (5)

where the integration is over the particle surface A. In obtaining the last equality we have
assumed a parabolic (Poiseuille) vertical profile, H (z/w) = 1 − 4z2/w2 [18]. Equation (5) is,
in fact, a manifestation of Faxen’s first law [3] as applied to the Q2D geometry. For a force-free
particle, Faxen’s law yields u = v + (a2/6)∇2v. The dipolar flow (4) has (∂xx + ∂yy)v = 0 and
∂zz |z=0v = [w−2 H ′′(0)/H (0)]v, from which equation (5) readily follows.

Substituting equation (4) in (5), we obtain a relation between the force f1 exerted on the
first particle and the resulting velocity change u2 of the second particle,

u2i = [1 − 4a2/(3w2)](a/w)B0�i j(ρ, 0) f1 j , (6)

thus identifying the off-diagonal coupling terms of the pair mobility tensor as Bc
i j(ρ) =

[1 − 4a2/(3w2)](a/w)B0�i j(ρ, 0). To get the coupling mobility along the line connecting
the pair, we consider the relation between f1x and u2x for ρ = ρ x̂ . Using equation (4) we get

Bc
L(ρ) = [1 − 4a2/(3w2)](a/w)B0�xx (ρ x̂, 0) = (a/w)B0�L(ρ)

�L(ρ) = λw2/ρ2.
(7)
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Similarly, for ρ = ρ ŷ the relation between f1x and u2x yields the coupling mobility transverse
to the connecting line,

Bc
T(ρ) = [1 − 4a2/(3w2)](a/w)B0�xx (ρ ŷ, 0) = (a/w)B0�T(ρ)

�T(ρ) = −λw2/ρ2.
(8)

In equations (7) and (8) we have defined

λ(a/w) = [1 − 4a2/(3w2)]λ0(a/w). (9)

This is a refinement of our previous analysis [10, 11]. In a Q2D geometry the so-called stokeslet
approximation, equating the coupling mobility with the flow velocity per unit force, strictly
holds only when a is much smaller than both the inter-particle distance ρ and the slab width w,
whereupon λ � λ0 � 9/16. If a is much smaller than ρ but comparable to w then, no matter
how large the inter-particle distance may be, we have λ < λ0. This is due to the second term
in Faxen’s law, ∼a2∇2v. In an unconfined liquid it contributes a negligible correction to the
stokeslet limit, O(a2/r2), whereas in Q2D the newly introduced length w leads to a significant
correction of O(a2/w2).

As found in equations (7) and (8), the pair hydrodynamic interaction in Q2D is very
different from its unconfined counterpart. The decay with distance is faster, ∼1/r2 instead of
∼1/r , yet the interaction is still long-range [23, 22]. (Its decay, in fact, is slower than near
a single surface, where the interaction falls off as 1/r3 [4, 5].) The transverse coupling is
negative, i.e., particles exert ‘anti-drag’ on one another as they move perpendicular to their
connecting line. (In the unconfined case one has �T = �L/2, both coefficients being positive.)
These properties are direct consequences of the far-flow field (4). The 1/ρ2 decay is that of
the flow due to a 2D mass dipole. The negative transverse coupling is a result of circulation
flows in the dipolar field [10].

For a pair of force-free Brownian particles, the hydrodynamic coupling derived above
implies that their motions be correlated according to equation (1), with Dc

L,T(ρ) =
(a/w)D0�L,T(ρ). Thus, the dimensionless couplings �L,T(ρ) can be directly measured from
the statistics of particle trajectories. These measurements for different area fractions φ are
presented in figure 2. The large-distance behaviour for all φ values fits well the ±λw2/ρ2

dependence of equations (7) and (8) with λ � 0.36. The negative sign of �T confirms
the predicted ‘anti-drag’ between particles located transverse to the direction of motion.
Substituting λ � 0.36 and a/w � 0.45 in equation (9), we find λ0(0.45) � 0.49, which is
only slightly smaller than the value for a vanishing confinement ratio, λ0(0) = 9/16 � 0.56.

6. Concentration effect

As the area fraction φ is increased, the pair hydrodynamic interaction should become affected
by the presence of other particles. In unconfined suspensions hydrodynamic screening sets in
at distances much larger than the typical inter-particle distance and renormalizes the interaction
by a concentration-dependent prefactor [2]. Similarly, one expects the pair interaction in Q2D
to have the form of equations (7) and (8) yet with a modified, φ-dependent prefactor. We find,
however, that this is not the case, as is clearly demonstrated in figure 2(e).

Consider again particle 1, located at the origin and exerting a force f1 parallel to the
confining surfaces. This creates a far-flow velocity v according to equation (4) which, in the
absence of any other particle, entrains particle 2 at r = (ρ, 0) with velocity u2 ∼ v(r) given
by equation (6). We now introduce particle 3 at r′ = (ρ′, 0). It obstructs the flow and thus
modifies u2.
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Figure 2. Longitudinal (�L, circles) and transverse (�T, squares) coupling diffusion coefficients
as a function of inter-particle distance ρ. The coefficients are scaled by D0a/w and the distance
by w. Area fractions are φ = 0.254 ((a), red), 0.338 ((b), orange), 0.547 ((c), green), and 0.619
((d), blue). All data are redrawn in (e), demonstrating a concentration-independent collapse of the
large-distance measurements onto the same two curves. Dashed lines are a fit to ±λ/(ρ/w)2 with
the same value of λ = 0.36 for all panels.

The particle being force free, the lowest force-distribution moment it can exert is a force
dipole,

Si j (r′) = λs(a/wB0)
−1 1

4πa2

∫
A

dr′′ (r′′ − r′)iv j (r′′), (10)

where the integration is over the surface of particle 3, and λs is a dimensionless factor of order
1. The force dipole, located at r′, changes the flow velocity at r by

δvs
i (r, r′) = Sjk(r′)(a/wB0)∂ j�ki (r − r′). (11)

This holds regardless of confinement. In an unconfined system the far flows decay as 1/r ,
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leading to S ∼ (r ′)−2 and δvs ∼ (r ′)−2|r − r′|−2. Then, upon integration over the third-
particle position r′, one gets a correction ∼1/r , which renormalizes the coefficient of the
bare 1/r interaction. In Q2D, however, the situation is different. First, we realize that,
due to the vanishing of vz and the symmetry of the mid-plane, only the terms i, j = x, y
of Si j in equation (10) are nonzero. Then, since the far flows decay as 1/ρ2, one gets
δvs ∼ (ρ ′)−3|ρ − ρ′|−3 which, upon integration over ρ′, yields a correction ∼1/ρ4. At large
distances this is much smaller than the bare pair interaction (∼1/ρ2) and will be neglected.

Since the force dipole created by particle 3 has a negligible far-field effect in Q2D, we
proceed to the third moment of the force distribution,

Ti jk(r′) = λt (a/wB0)
−1 1

4πa2

∫
A

dr′′ (r′′ − r′)i(r′′ − r′) jvk(r′′), (12)

where λt is another dimensionless prefactor depending only on the confinement ratio a/w.
In principle, λt (and λs) could be calculated using the short-range hydrodynamics in a Q2D
geometry [18, 19], yet we shall not pursue this technically complicated calculation here. The
vanishing of vz and the mid-plane symmetry make all terms Ti jk, for which one or three of
the indices are z, vanish. In addition, the terms with (i, j, k) = (x, y) are negligible at large
distances compared to those with two z indices, since they involve two additional powers of
1/ρ′. We are thus left with Tzzi , i = (x, y), yielding through equations (4) and (12)

Tzzi (ρ
′) = 1

3
λt a

2

(
1 − 12a2

5w2

)
�i j(ρ

′, 0) f1 j . (13)

In the integration we have assumed again a parabolic vertical profile, H (z/w) = 1 −
4z2/w2 [18]. Note that within this assumption the similar leading terms in 1/ρ ′ from all
higher moments of the force distribution, involving higher z derivatives, vanish. The moment
T (ρ′) changes the flow velocity at ρ by

δvt
i (r, r′) = Tzz j(ρ

′)(a/wB0)∂zz |z=0� j i(ρ − ρ′, 0). (14)

Combining equations (4), (5), (13) and (14), we find the correction to the velocity of particle
2 due to particle 3,

δu2i = (a/wB0)C1�i j(ρ − ρ′)� jk(ρ
′) f1k

C1 = −λt
8a2

3w2

(
1 − 4a2

3w2

) (
1 − 12a2

5w2

)
,

(15)

where the reference to z = 0 is hereafter omitted for brevity.
Equation (15) yields the correction to u2 given a certain position ρ′ of particle 3. We now

wish to average this correction over all possible ρ′,

〈δu2〉 =
∫

d2ρ ′ p(ρ,ρ′)δu2(ρ,ρ′), (16)

where p(ρ,ρ′) is the probability density of finding particle 3 at ρ′ given that particle 2 is at
ρ and particle 1 is at the origin. Employing the superposition approximation, we take this
probability as

p(ρ,ρ′) � φ

πa2
g(ρ ′)g(|ρ − ρ′|) � φ

πa2
[1 + h(ρ ′) + h(|ρ − ρ′|)], (17)

where g(ρ) is the pair correlation function of the Q2D suspension (normalized to 1 at ρ → ∞),
and h(ρ) = g(ρ) − 1. We have assumed that the monolayer of particles is a disordered 2D
liquid, and thus the pair correlation has no angular dependence.
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Using equations (15)–(17), and specializing to the relation between 〈δu2x 〉 and f1x , we
obtain the average corrections to the coupling mobilities,

δBc
L,T(ρ) = (a/w)B0δ�L,T(ρ)

δ�L,T(ρ) = (πa2)−1C1φ

∫
d2ρ ′ [1 + 2h(ρ ′)][�xx (ρ − ρ′)�xx (ρ

′) + �xy(ρ − ρ′)�xy(ρ
′)],

(18)

where the longitudinal and transverse couplings are obtained, as in section 5, by taking ρ = ρ x̂
and ρ = ρ ŷ, respectively. (Note that equation (18), for h(ρ) = 0, has exactly the same form
as the one used in [10, 11] based on a less detailed analysis.)

A brief examination of equation (18) raises two expectations. First, the integrand scales as
(ρ ′)−2|ρ−ρ′|−2 which, upon integration over ρ′, is expected to yield a correction ∼1/ρ2, i.e.,
a renormalization of the prefactor of the bare coupling in accord with hydrodynamic screening.
Second, since the fields �i j decay slowly with distance, one expects features (oscillations) in
the static correlation function h(ρ) to be smoothed by integration and thus be manifest only
weakly in the dynamic coupling. As is shown below, due to the unique shape of the far flow
in Q2D, both of these expectations turn out to be false.

The convolution integral of equation (18) is worked out in the appendix. The result is

δ�L,T(ρ) = Cφw2

[
h(ρ)

ρ2
− 2

∫ ∞

ρ

dξ
h(ξ)

ξ3
+ O(a2/ρ4)

]
, (19)

where C = −2(w2/a2)λ2
0C1, and the results for the longitudinal and transverse couplings are

identical. Equation (19) is the main result of the current work. It gives the leading three-body
correction to the pair hydrodynamic interaction in Q2D. If static pair correlations are neglected,
h(ρ) = 0, this correction vanishes, as was presented in [10, 11]. Moreover, the correction for
a nonzero h(ρ), although finite, is short-range: since the suspension is disordered, the static
pair correlation h(ρ) decays exponentially beyond an equilibrium correlation length. Thus,
the correction in equation (19) decreases with distance much faster than the 1/ρ2 decay of
the bare interaction. This remarkable disagreement with the usual notion of hydrodynamic
screening (i.e., concentration-dependent change of the prefactor at large distances), known
from unconfined systems, is fully confirmed by our experimental measurements as is seen in
figure 2(e).

The first term in equation (19) represents the leading correction to equations (7) and (8)
as the inter-particle distance ρ decreases. It scales as h(ρ)/ρ2 and, therefore, should be
in phase with the oscillations of the static pair correlation. The second term is smaller, of
order ah(ρ)/ρ3. Higher-order corrections, which have not been treated here, come from
several sources. Corrections of O(a2/ρ4) arise from the integration in equation (18) (see the
appendix), as well as the force–dipole terms (δvs ) discussed above. Terms of O(h2/ρ2) come
from the approximation employed in equation (17). Finally, as ρ becomes comparable to w,
short-distance hydrodynamics set in and the far flow (4), on which our entire analysis has been
relying, should be corrected [18]. Thus, the expression formulated in equation (19) is relevant
to suspensions of sufficiently high concentration, such that the static pair correlation h(ρ) is
significant at distances ρ > w where the far flow holds.

To compare equation (19) with experiment we need the static pair correlation function for
the various values of area fraction. These functions are directly measurable from snapshots of
the Q2D suspensions such as the one shown in figure 1(a). (For more details, see [20].) The
results are presented in figure 3.

The measured h(ρ) are subsequently used in equation (19) to calculate the correction to the
pair interaction. The results are shown in figure 4. With the coefficient λ of the bare interaction
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Figure 3. Static pair correlation function as measured from suspension snapshots. Plotted is
h(ρ) = g(ρ) − 1, where g(ρ) is the pair correlation function normalized to 1 at ρ → ∞. The
inter-particle distance is scaled by w. Area fractions are, from the bottom up, φ = 0.254 (red),
0.338 (orange), 0.547 (green), and 0.619 (blue). Curves are vertically shifted by 1 for clarity.

already found, there is only one unknown coefficient, C , fitted as C � 0.85. Substituting this
value back in the definitions of the various coefficients introduced during the calculation, we
find the coefficient of the third force moment for our experimental system (a/w � 0.45) to be
λt � 1.77. Comparing the fits in figure 4 with those in figure 2, we see that the introduction of
the concentration-dependent correction leads to a good agreement between the theory and the
measured longitudinal interaction not only at asymptotically large distances (as was presented
in [10, 11]) but also at intermediate distances, ρ > 2w. As anticipated, equation (19)
is particularly successful for the high-concentration systems (figures 4(c) and (d)), where
oscillations related to h(ρ) are clearly observed (compare with figure 3). The discrepancies
seen in figure 4 between the theory and experiment for ρ � 2w can be attributed to several
factors, as discussed above, which have not been included in the current analysis.

Our calculation has yielded an identical correction to the transverse pair interaction,
δ�T = δ�L. This does not agree with the measured transverse interaction, which does not
exhibit a wiggly behaviour similar to that of �L (see figure 2). Thus, we cannot currently offer
an accurate analysis of the concentration effect on the transverse interaction at intermediate
and short distances. A possible reason for the difference between the longitudinal and
transverse modes may lie in the higher sensitivity of the latter to short-range hydrodynamics.
To demonstrate this difference we show in figure 5 the deviations of the longitudinal and
transverse bare interactions from their large-distance behaviour in the limit of very small
particles (a/w � 1), as obtained from an exact solution [18]. The departure of the transverse
interaction from its asymptotic behaviour is found to be more pronounced than that of the
longitudinal one.

7. Discussion

The correlated dynamics of particles in Q2D suspensions are very different from those in
unconfined systems. Confinement affects the decay of the dynamic correlation with distance
(1/r2 instead of 1/r ) as well as its sign (the correlation transverse to the line connecting
the particles becomes negative). In the current work we have focused on the effect of
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Figure 4. Concentration effect on the longitudinal coupling diffusion coefficient. The diffusion
coefficient is scaled by D0a/w and the inter-particle distance by w. Area fractions are φ = 0.254
((a), red), 0.338 ((b), orange), 0.547 ((c), green), and 0.619 ((d), blue). Dashed lines are a fit to
equations (7), (19) with λ = 0.36 (already fitted in figure 2) and C = 0.85 for all panels. Insets
focus on the deviation of the coupling from its long-distance behaviour. The oscillations at high
concentration are in phase with those of the measured static pair correlation (see figure 3).

concentration, i.e., the presence of additional particles, on the pair interaction. Unlike
unconfined suspensions, where the large-distance coupling changes with concentration, in
Q2D suspensions increasing the concentration has no effect at large inter-particle distances
(no hydrodynamic screening). The qualitatively different behaviour of Q2D suspensions has
been theoretically and experimentally corroborated. It stems from the dipolar shape of the far
flow induced by particle motion. As argued in [10, 11, 22], the key property of this flow is that
it is governed by the displacement of liquid mass rather than the diffusion of liquid momentum.

Concentration-dependent effects on the pair correlation do set in in Q2D suspensions, yet
only at intermediate and short distances. The range of these corrections is determined by the
larger of two lengths: the range of the static pair correlation h(ρ) of the suspension and the
confinement width w. In the former case, which is valid for sufficiently high concentration, the
spatial dependence of the dynamic coupling reflects the features of the static pair correlation.
In this case we have been able to provide a quantitative account for the concentration effect
on the longitudinal interaction at intermediate distances, which is in good agreement with
the experimental measurements. In the latter case (range of h shorter than w), the correction
depends on short-range hydrodynamics whose analysis lies beyond the scope of the current
work.

We have not treated the effect of particle motion perpendicular to the bounding surfaces.
Such fluctuations must exist in practice, yet our results suggest that they have a minor effect at
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Figure 5. Deviation of the pair interaction from its large-distance behaviour in the limit of very
small particles. The deviation of the transverse interaction (T, dashed line) is larger than that of the
longitudinal one (L, solid line). The curves were calculated using the exact solution for a/w � 1
given in [18]. The large-distance behaviour in this limit is given by �L,T � ±λ/(ρ/w)2, with
λ = 9/16.

large and intermediate distances. This is expected since the flows produced by perpendicular
fluctuations decay exponentially with distance and thus have only a short-range effect [18].
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Appendix

We need to calculate the integral appearing in equation (18):

I (ρ) =
∫

d2ρ ′ [1 + 2h(ρ ′)][�xx(ρ
′)�xx (ρ − ρ′) + �xy(ρ

′)�xy(ρ − ρ′)], (20)

where (omitting the prefactor)

�xx (ρ) = (x2 − y2)/ρ4, �xy(ρ) = 2xy/ρ4. (21)

Changing to polar coordinates, ρ = (ρ, ϕ) and ρ′ = (ρ ′, ϕ′), we rewrite the integral as

I (ρ) =
∫

d2ρ ′ [1 + 2h(ρ ′)]
ρ2 cos[2(ϕ′ − ϕ)] + ρ ′2 − 2ρρ ′ cos(ϕ′ − ϕ)

ρ ′2[ρ2 + ρ ′2 − 2ρρ ′ cos(ϕ′ − ϕ)]2
, (22)

from which it is evident that I (ρ) = I (ρ) is independent of ϕ. Hence, we may set ϕ = 0.
This isotropy immediately implies also that the corrections to the longitudinal and transverse
couplings, proportional to I (ρ x̂) and I (ρ ŷ), respectively, are identical.

The calculation of I (ρ) via equation (22) is a bit tricky for reasons similar to those
encountered in electrostatics. We exclude two small areas ∼a2 around the (integrable)
singularities at ρ ′ = 0 and ρ′ = ρ, and divide the integration into three domains:
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(i) ρ ′ ∈ (a, ρ − a), ϕ′ ∈ (0, 2π); (ii) ρ ′ ∈ (ρ + a,∞), ϕ′ ∈ (0, 2π); (iii) ρ ′ ∈ (ρ − a, ρ + a),
ϕ′ ∈ (a/ρ, 2π − a/ρ). The contribution from the inner domain (i) vanishes upon integration
over ϕ′ for any ρ. (Note that the static pair correlation h(ρ) does not have an angular
dependence.) Integration over ϕ′ in the outer domain (ii) gives 2π[1 + 2h(ρ ′)]/(ρ ′)3.
Subsequent integration over ρ ′ in domain (ii) yields 2π

∫ ∞
ρ

dρ ′ [1 + 2h(ρ ′)]/(ρ ′)3 + O(a/ρ3).
However, due to the integrable singularity at ρ′ = ρ, the intermediate narrow domain (iii) has
a finite contribution as well, of opposite sign: −π[1 + 2h(ρ)]/ρ2 + O(a/ρ3).

Thus, in the absence of static correlations, h(ρ) = 0, the leading terms in small a/ρ

from domains (ii) and (iii) cancel and I (ρ � a) = 0. This result has already been obtained
in [10, 11]. A more detailed inspection reveals that the O(a/ρ3) corrections from domains (ii)
and (iii) cancel as well and, hence, I = O(a2/ρ4).

In the presence of static correlations, h �= 0, we finally get

I (ρ) = −2π

[
h(ρ)

ρ2
− 2

∫ ∞

ρ

dξ
h(ξ)

ξ3

]
+ O(a2/ρ4). (23)
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